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Modified weighted density approximation for binary hard-sphere solid mixtures
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The modified weighted density approximation is investigated in order to determine the thermodynamics of
the ordered CsCl and NaCl structures. Our results indicate that one of the essential assumptions of the theory,
namely, the uniform fluid limit, is not well defined for mixturd$1063-651X98)11810-X

PACS numbd(s): 64.10+h, 64.30+t, 05.70.Ce

In recent years the modified weighted density approxima- 2 2
tion (MWDA) of Denton and Ashcroftl] has been applied BFalp1,p2]= —E 2 f drpi(r)j dr’p;(r’)
to the study of two apparently unrelated problems: the analy- ==t

sis of the uniqueness of its solutiof,3] and the determi- 1
nation of the thermodynamic properties of high-density sol- X fo dN(1=N)gji(r,r';[Np1,Ap2]),
ids [4,5]. In the MWDA the excess free energy of a hard-

sphere solid is mapped onto that of a hard-sphere fluid 2
evaluated at an effective liquid density. This effective liquid h

density is obtained as the solution of a nonlinear equation\fv ere
which in the original paper of Denton and Ashcroft was as- 82 BF o[ p1:po]

sumed to be unique. Although the multiplicity of solutions Cij(r,r';[p1.p2])=— e (3
for the effective liquid density in the MWDA was pointed opi(r) dpi(r’)

out by Kyrlidis and Brown[2], Likos and Ashcroft[3]
showed that the correct application of the uniform fluid limit

?/'EIdds a l_JnIC]U?dSO|I<I/tI0n for the; effer::twe I|qU|gI ﬁenskl)ty for stant average densjtpy the equilibrium densities, but since
ow-density solids. Very recentlj], however, it has been the direct correlation functions are unknown for nonuniform

shown that the MWDA is unable to predict the existence ofg,iqs some approximations are required for the evaluation

high-density solids in the case of a fcc hard-sphere crystal. I BF ol p1.ps].

this paper we extend the latter investigation to two binary The following recipes are considered in the MWDA of

hard-sphere solid mixtures already studied within thepenton and Ashcroftsee[7] for detail§. First, the excess

MWDA in [7]. free energy of the binary hard-sphere solid mixture is
We consider a binary mixture ®f; small hard spheres of mapped onto that of some effective binary hard-sphere fluid

diametero; and N, large hard spheres of diametey in a  mixture, i.e.,

volume V at temperatureT. For average densitiep, R ~

=N;/V and p,=N,/V, the binary mixture can be charac- BF &P [ p1,p2]=NL(1=X) (1, X) +Xth(p2,X)], (4)

terized by three quantities: the concentration of the large )

spherec=p,/p (p=p1+p,), the hard-sphere diameter ra- WNere N=Ni+N; and i(p,x)=Bfedp,x), With fe(p,X)

: — . i i denoting the excess free energy per particle of the hard-
= =
tio « 0'1/0'2 1, and the packlng fractlon (the fraction of Sph re fluid mixtur f densit nd concentration. This

f _ 3 3
volume occupied by the sphejes= (P01 1 p203)/6. . “thermodynamic mapping” defines the weighted densities
The Helmholtz free energy of the binary hard-sphere solid-™ -~ N .
1=pilp1,p2] andp,=p,[p1,p2], Which are postulated to

ixture F[py,p,] is a functional(denoted b brack- P17 P _
g:g( uc:]? trEgl f;é]alls ;enusr;g;ggf(g)eg%g pz(yr)sq[ufadrrepi(rre;c be bilinear weighted averages of the local densities, i.e.,

=N;, i=1,2] that may be split into ideaF4[ p;1,p»] and

2
excess ¢ p1,p»] contributions. The functional dependence ;,i:i > f dfPi(r)f dr’pj(r’)wij(|r—r’|;[)i X),
of the ideal part is exactly known, i.e., Ni =1 )
5

2 wherew;; (|r — r'|;pi ,X) are weight functions normalized ac-
BFdonoal=3, [ dro(iinlp(nafl-1), @  cordingto

are the direct correlation functions. The density functional
theory of freezing states th&{ p,,p,] is minimized(at con-

f drw;;(r;p; . x)=1. (6)
whereB=1/kgT, kg denoting Boltzmann’s constant, and o N ) o
is the thermal de Broglie wavelength of the componignt These normalization conditions ensure that in the limit of a
whereas the excess free energy can be formally written asuniform mixture[p,(r)—p1, p2(r)—pal, p1—p, p2—p,
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and thereforé \2'**[ p1,p,]— fed(p.X), i.€., the excess free 400
energy per particle of the binary hard-sphere solid mixture bce
fYWDAI b1, p,] reduces to that of a uniform mixture of den-

sity p and concentration. 300

In a second step, the MWDA establishes a unique speci-
fication of the weight functions by requiring that E)
exactly satisfies Eq3) in the uniform limit

'y;" 200
. . 5’ BFeyx > [p1,p2]
lim lim | —
pa(t)—p1 pa(t)—py opi(r)dp;(r’) o=1
100
=cij(Ir=r";p1.p2), (7) 7=0.638
wherec;;(r,p1,p,) are the direct correlation functions of a
binary hard-sphere fluid mixture, which are assumed to be 0
known. These functional derivatives yield analytic expres- 0 100 200* 300 400
sions for the weight functions in terms of the direct correla- Y,

tion functions and the excess free energy of the binary hard-

sphere fluid mixture, which have been approximated here FIG. 1. Region of the {7 ;) plane where the lower branches
using Lebowitz's solution of the Percus-Yevick equatiéh  7; and »; exist(denoted by a dashed zorfer a bcc crystal aty
Substitution of the weight functions obtained from @) =0.638. The minimum of the variational solid free energy is at
into Eq. (5) leads to two uncoupled equations for the deter-¥i =¥ = 1436(not shown in the figune Note that only the points

mination of p; and p,, which are functionals of the local ©" the diagonal represent a physical situation whenl.

Sgﬂzgﬁsg 1(521 ?Jgdsﬁi)r%(gl)ifi e-(rjhk?ycgsrgﬁlrﬁiitgectihg{[n?rt:?ﬁglcii-e g{able solid is found, the exchange of stability between the
ordered structures, the local densities can be parametrized 3%!1:3”?};32 ;ng;;:emgﬁ]ﬂgl[ﬁ] f'rzgtzﬁglred when both

a sum of identical normalized Gaussians centered around tHe We first considem= 1. in which case the CgZCI and NaCl
lattice sites of each sublattice with inverse Gaussian width . ' .
parameters y, (i=1,2). With the parametrizations the structures are simple bcc and sc crystals, respectively. For

i — &) . ~ ~ .

weighted densities become ordinary functionsygfandy,.  these symmetrical structureg =y, and s, = »,. In Figs. 1

By fixing p, X, and a, the equilibrium solid is found by @nd 2 we plotinthe{7,yz) plane (" = yio?) the regions
minimizing the variational solid free energy with respect to(denoted by dashed zoneshere the lower brancheg; and

71 and y,, once the crystal structure is specified. In this 7)) exist for a bce crystal at packing fractions=0.638 and
paper we have considered the cesium chlof@sC) and the  ;,—.639. The former case is the upper low-density solid for
sodium chloridegNaC) structures. _ o which the minimum of the variational solid free energt

!t can be reg@ly shown th.at the egua}pns qetegmlmng theyflc = y% =1436) can be connected with the origin through
weighted densities are quartic equationsir= mp,07/6 and

72=Tp,03/6 with real coefficients that are smooth func- 400

tions of the Gaussian width parameters. Given a pair bcc
(v1,72), €ach quartic equation has either two real ro?z’ts

and 7/ (<7, i=1,2) or no real roots, the number of 300

real roots depending on the specific valuep ok, anda. In
the former case only the lower branché{; and 37§ satisfy

the uniform fluid limit YT 500

~,  2a° ., 2 (71250 o)

— 1, _— —0, —
71 1+a377 72 1+a377 Y1 Y2 o=1
(8) 100 _
7n=0.639

and these are the branches to be used for finding the mini-
mum of the variational solid free energy. When this mini- 0
mum exists, ¢7"",y5"), and it can be connected with the 0 100 200 300 400
origin (y,=1v,=0) in the (y;,y,) plane by a continuous ’YT

path of points for which both lower branches exist, then the

MWDA predicts a mechanically stable solid. When that re- FIG. 2. Regions of they} ,y3) plane where the lower branches
quirement is not fulfilled, the existence of a minimum of the 7} and 75 exist (denoted by dashed zonesr a bcc crystal aty
variational solid free energy is not a sufficient condition for =0.639. The minimum of the variational solid free energy is at
finding mechanically stable solids within the MWDA since y* = y% =1513(not shown in the figure Note that only the points
the uniform fluid limit is not satisfied. Once a mechanically on the diagonal represent a physical situation whenl.
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FIG. 3. Same as in Fig. 1 for a sc crystal at0.368. The

L .y . FIG. 5. Region of the {5 ,5) plane where the lower branches
minimum of the variational solid free energy, denoted by a full dot, ~, o
is at y* = 74 =99.1 71 and 7, exist(denoted by a dashed zgrfer a CsCl structure at
1~ 727 il

a=0.85 and»=0.6. The minimum of the variational solid free

the dashed zone by a continuous path of poitite diago-  "€"%" denoted by a full dot, is 8 =276.5,y; =312.7

nal). This is an example of a mechanically stable solid satis- e . i ;
fying the uniform fluid limit. In the latter case, however, the form fluid limit is uniquely defined because the oriphysi-

minimum (at y* = y% = 1513) cannot be connected with the cal) continuous path connecting that point with fche origin is
origin by the diagonal since there is a region with no Solu_preusely the diagonal. Ir.1 Fig. 5 we plot the regl(coifanoted
tions between 171 y* =y <241.4. Figures 3 and 4 are ti)y a dashed zonpef solutions for the lower brancheg and

the same as Figs. 1 and 2 for a sc crystal for packing frac#, for the CsCl structure at=0.85 and»=0.6. In this case
tions »=0.368 andz=0.369, the minimum of the varia- the minimum of the variational solid free energy is #t
tional free energy being located af = y5 =99.1 andy} =276.5, y5=312.7. Clearly, this point can be connected
=5 =102.0, respectively. The region of nonexistence ofwith the origin by a continuoussomewhat artificigl path
solutions atp=0.639 is found in the range 489y} =y through the dashed zone, indicating in principle the existence
<59.1. These results indicate that for both crystals there is 8f @ mechanically stable solid within the MWDA. Lowering
density threshold above which the MWDA in unable to pre-a, the dashed zone becomes increasingly deformed, as can
dict mechanically stable solids, a result similar to the onebe seen in Fig. 6 for the same structureaat 0.8 and »
already found for the fcc crystal ir6]. =0.6, the minimum being now located af =242.4, y;

Note that for the symmetrical structurébcc and sg =359.7 (compare the scales in Figs. 5 angl #he main
min min

starting from a point on the diagonay;""=y5"", the uni-  conclusion that can be inferred from these examples is that
400 400
sC
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300 300
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FIG. 4. Same as in Fig. 2 for a sc crystal at0.369. The

Yr

is aty} = y3 =102.0.

Y

FIG. 6. Same as in Fig. 5 at=0.8 and»=0.6. The minimum
minimum of the variational solid free energy, denoted by a full dot, of the variational solid free energy, denoted by a full dot, ig/at
=242.4,y5 =359.7. Note the different scales in Figs. 5 and 6.
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FIG. 7. Curves in the ¢, 7) plane of the breakdown of the FIG. 8. Same as in Fig. 7 for the NaCl structure. Note that there
existence of solutions for the lower branchgisand 7, (full dots), is no region satisfying the uniform fluid limit and the stability con-
exchange of stability with respect to the fl(impen doty and close  dition.
packing (dotted ling for the CsCI structure. The continuous and

dashed curves are guides to the eye. The dashed zone satisfies fighdition (above the dashed lifethis region does not exist
uniform fluid limit and the stability condition. for the NaCl structure

the uniform fluid limit (7) is not well defined for mixtures In conclusion, we have shown that the uniform fluid limit

since the way that has to be taken strongly dependa.on is not well defined for binary hard-sphere mixtures within the

Nevertheless, by assuming that the uniform fluid limit existsMYDA. By assuming that this limit can be redefined in a
whenever a continuous path connecting the minimum witt/€"y Special way, which strongly depends on the hard-sphere
the origin can be found, in Figs. 7 and 8 we plot in tae £) diameter ratio, we have also found that the MWDA is unable

plane by a continuous line the breakdown curve of the existo predict any stable NaCl structure with respect to the fluid

tence of solutions for the lower branche$ and 75, by a

dashed line the curve of the exchange of the stability be-

tween the crystal structure and the fluid phase, and by a We would like to thank the DireccioGeneral de Inves-
dotted line the close packing curve. It is seen that while fotigacion Cientfica y Tecnica DGICYT, Spain(Grant No.
the CsCl structure there is a small region satisfying the uniPB94-026% for financial support. We are grateful to M.
form fluid limit (below the continuous lineand the stability ~Baus for many valuable comments.
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