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Modified weighted density approximation for binary hard-sphere solid mixtures

Guiomar Ruiz1 and Carlos F. Tejero2
1Escuela Universitaria de Ingenierı´a Técnica Aerona´utica, Universidad Polite´cnica de Madrid, E-28040 Madrid, Spain

2Facultad de Ciencias Fı´sicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
~Received 20 May 1998!

The modified weighted density approximation is investigated in order to determine the thermodynamics of
the ordered CsCl and NaCl structures. Our results indicate that one of the essential assumptions of the theory,
namely, the uniform fluid limit, is not well defined for mixtures.@S1063-651X~98!11810-X#

PACS number~s!: 64.10.1h, 64.30.1t, 05.70.Ce
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In recent years the modified weighted density approxim
tion ~MWDA ! of Denton and Ashcroft@1# has been applied
to the study of two apparently unrelated problems: the an
sis of the uniqueness of its solutions@2,3# and the determi-
nation of the thermodynamic properties of high-density s
ids @4,5#. In the MWDA the excess free energy of a har
sphere solid is mapped onto that of a hard-sphere fl
evaluated at an effective liquid density. This effective liqu
density is obtained as the solution of a nonlinear equat
which in the original paper of Denton and Ashcroft was a
sumed to be unique. Although the multiplicity of solution
for the effective liquid density in the MWDA was pointe
out by Kyrlidis and Brown @2#, Likos and Ashcroft@3#
showed that the correct application of the uniform fluid lim
yields a unique solution for the effective liquid density f
low-density solids. Very recently@6#, however, it has been
shown that the MWDA is unable to predict the existence
high-density solids in the case of a fcc hard-sphere crysta
this paper we extend the latter investigation to two bin
hard-sphere solid mixtures already studied within
MWDA in @7#.

We consider a binary mixture ofN1 small hard spheres o
diameters1 andN2 large hard spheres of diameters2 in a
volume V at temperatureT. For average densitiesr1

5N1 /V and r25N2 /V, the binary mixture can be charac
terized by three quantities: the concentration of the la
spheresx[r2 /r (r5r11r2), the hard-sphere diameter ra
tio a[s1 /s2<1, and the packing fractionh ~the fraction of
volume occupied by the spheres! h5p(r1s1

31r2s2
3)/6.

The Helmholtz free energy of the binary hard-sphere so
mixture F@r1 ,r2# is a functional~denoted by square brack
ets! of the local densitiesr1(r ) and r2(r ) @*drr i(r )
5Ni , i 51,2# that may be split into idealF id@r1 ,r2# and
excessFex@r1 ,r2# contributions. The functional dependen
of the ideal part is exactly known, i.e.,

bF id@r1 ,r2#5(
i 51

2 E drr i~r !$ ln@r i~r !L i
3#21%, ~1!

whereb51/kBT, kB denoting Boltzmann’s constant, andL i
is the thermal de Broglie wavelength of the componeni ,
whereas the excess free energy can be formally written
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bFex@r1 ,r2#52(
i 51

2

(
j 51

2 E drr i~r !E dr 8r j~r 8!

3E
0

1

dl~12l!ci j ~r ,r 8;@lr1 ,lr2# !,

~2!

where

ci j ~r ,r 8;@r1 ,r2# !52
d2bFex@r1 ,r2#

dr i~r !dr j~r 8!
~3!

are the direct correlation functions. The density function
theory of freezing states thatF@r1 ,r2# is minimized~at con-
stant average density! by the equilibrium densities, but sinc
the direct correlation functions are unknown for nonunifo
fluids, some approximations are required for the evaluat
of bFex@r1 ,r2#.

The following recipes are considered in the MWDA
Denton and Ashcroft~see@7# for details!. First, the excess
free energy of the binary hard-sphere solid mixture
mapped onto that of some effective binary hard-sphere fl
mixture, i.e.,

bFex
MWDA@r1 ,r2#5N@~12x!c~ r̂1 ,x!1xc~r̂2 ,x!#, ~4!

where N5N11N2 and c(r,x)5b f ex(r,x), with f ex(r,x)
denoting the excess free energy per particle of the ha
sphere fluid mixture of densityr and concentrationx. This
‘‘thermodynamic mapping’’ defines the weighted densiti
r̂1[r̂1@r1 ,r2# and r̂2[r̂2@r1 ,r2#, which are postulated to
be bilinear weighted averages of the local densities, i.e.,

r̂ i5
1

Ni
(
j 51

2 E drr i~r !E dr 8r j~r 8!wi j ~ ur2r 8u; r̂ i ,x!,

~5!

wherewi j (ur2r 8u; r̂ i ,x) are weight functions normalized ac
cording to

E drwi j ~r ; r̂ i ,x!51. ~6!

These normalization conditions ensure that in the limit o
uniform mixture @r1(r )→r1 , r2(r )→r2], r̂1→r, r̂2→r,
5171 © 1998 The American Physical Society
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and thereforef ex
MWDA@r1 ,r2#→ f ex(r,x), i.e., the excess free

energy per particle of the binary hard-sphere solid mixt
f ex

MWDA@r1 ,r2# reduces to that of a uniform mixture of den
sity r and concentrationx.

In a second step, the MWDA establishes a unique sp
fication of the weight functions by requiring that Eq.~4!
exactly satisfies Eq.~3! in the uniform limit

lim
r1~r !→r1

lim
r2~r !→r2

F2
d2bFex

MWDA@r1 ,r2#

dr i~r !dr j~r 8!
G

5ci j ~ ur2r 8u;r1 ,r2!, ~7!

whereci j (r ,r1 ,r2) are the direct correlation functions of
binary hard-sphere fluid mixture, which are assumed to
known. These functional derivatives yield analytic expre
sions for the weight functions in terms of the direct corre
tion functions and the excess free energy of the binary h
sphere fluid mixture, which have been approximated h
using Lebowitz’s solution of the Percus-Yevick equation@8#.
Substitution of the weight functions obtained from Eq.~7!
into Eq. ~5! leads to two uncoupled equations for the det
mination of r̂1 and r̂2 , which are functionals of the loca
densitiesr1(r ) and r2(r ). The complicated functional de
pendence can be simplified by assuming that, in the cas
ordered structures, the local densities can be parametrize
a sum of identical normalized Gaussians centered around
lattice sites of each sublattice with inverse Gaussian w
parametersg i ( i 51,2). With the parametrizations th
weighted densities become ordinary functions ofg1 andg2 .
By fixing r, x, and a, the equilibrium solid is found by
minimizing the variational solid free energy with respect
g1 and g2 , once the crystal structure is specified. In th
paper we have considered the cesium chloride~CsCl! and the
sodium chloride~NaCl! structures.

It can be readily shown that the equations determining
weighted densities are quartic equations inĥ15pr̂1s1

3/6 and

ĥ25pr̂2s2
3/6 with real coefficients that are smooth fun

tions of the Gaussian width parameters. Given a p
(g1 ,g2), each quartic equation has either two real rootsĥ i8

and ĥ i9 (ĥ i8,ĥ i9 , i 51,2) or no real roots, the number o
real roots depending on the specific values ofr, x, anda. In
the former case only the lower branchesĥ18 and ĥ28 satisfy
the uniform fluid limit

ĥ18→
2a3

11a3
h, ĥ28→

2

11a3
h ~g1→0, g2→0!

~8!

and these are the branches to be used for finding the m
mum of the variational solid free energy. When this min
mum exists, (g1

min,g2
min), and it can be connected with th

origin (g15g250) in the (g1 ,g2) plane by a continuous
path of points for which both lower branches exist, then
MWDA predicts a mechanically stable solid. When that
quirement is not fulfilled, the existence of a minimum of t
variational solid free energy is not a sufficient condition f
finding mechanically stable solids within the MWDA sinc
the uniform fluid limit is not satisfied. Once a mechanica
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stable solid is found, the exchange of stability between
solid and the Percus-Yevick fluid@8# is obtained when both
phases have the same Helmholtz free energy.

We first considera51, in which case the CsCl and NaC
structures are simple bcc and sc crystals, respectively.
these symmetrical structuresg15g2 andĥ15ĥ2 . In Figs. 1
and 2 we plot in the (g1* ,g2* ) plane (g i* 5g is2

2) the regions

~denoted by dashed zones! where the lower branchesĥ18 and

ĥ28 exist for a bcc crystal at packing fractionsh50.638 and
h50.639. The former case is the upper low-density solid
which the minimum of the variational solid free energy~at
g1* 5g2* 51436) can be connected with the origin throu

FIG. 1. Region of the (g1* ,g2* ) plane where the lower branche

ĥ18 and ĥ28 exist ~denoted by a dashed zone! for a bcc crystal ath
50.638. The minimum of the variational solid free energy is
g1* 5g2* 51436~not shown in the figure!. Note that only the points
on the diagonal represent a physical situation whena51.

FIG. 2. Regions of the (g1* ,g2* ) plane where the lower branche

ĥ18 and ĥ28 exist ~denoted by dashed zones! for a bcc crystal ath
50.639. The minimum of the variational solid free energy is
g1* 5g2* 51513~not shown in the figure!. Note that only the points
on the diagonal represent a physical situation whena51.
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the dashed zone by a continuous path of points~the diago-
nal!. This is an example of a mechanically stable solid sa
fying the uniform fluid limit. In the latter case, however, th
minimum ~at g1* 5g2* 51513) cannot be connected with th
origin by the diagonal since there is a region with no so
tions between 171.1<g1* 5g2* <241.4. Figures 3 and 4 ar
the same as Figs. 1 and 2 for a sc crystal for packing fr
tions h50.368 andh50.369, the minimum of the varia
tional free energy being located atg1* 5g2* 599.1 andg1*
5g2* 5102.0, respectively. The region of nonexistence
solutions ath50.639 is found in the range 48.9<g1* 5g2*
<59.1. These results indicate that for both crystals there
density threshold above which the MWDA in unable to p
dict mechanically stable solids, a result similar to the o
already found for the fcc crystal in@6#.

Note that for the symmetrical structures~bcc and sc!,
starting from a point on the diagonal,g1

min5g2
min, the uni-

FIG. 3. Same as in Fig. 1 for a sc crystal ath50.368. The
minimum of the variational solid free energy, denoted by a full d
is at g1* 5g2* 599.1.

FIG. 4. Same as in Fig. 2 for a sc crystal ath50.369. The
minimum of the variational solid free energy, denoted by a full d
is at g1* 5g2* 5102.0.
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form fluid limit is uniquely defined because the only~physi-
cal! continuous path connecting that point with the origin
precisely the diagonal. In Fig. 5 we plot the region~denoted
by a dashed zone! of solutions for the lower branchesĥ18 and

ĥ28 for the CsCl structure ata50.85 andh50.6. In this case
the minimum of the variational solid free energy is atg1*
5276.5, g2* 5312.7. Clearly, this point can be connecte
with the origin by a continuous~somewhat artificial! path
through the dashed zone, indicating in principle the existe
of a mechanically stable solid within the MWDA. Lowerin
a, the dashed zone becomes increasingly deformed, as
be seen in Fig. 6 for the same structure ata50.8 andh
50.6, the minimum being now located atg1* 5242.4, g2*
5359.7 ~compare the scales in Figs. 5 and 6!. The main
conclusion that can be inferred from these examples is

,

,

FIG. 5. Region of the (g1* ,g2* ) plane where the lower branche

ĥ18 andĥ28 exist ~denoted by a dashed zone! for a CsCl structure at
a50.85 andh50.6. The minimum of the variational solid fre
energy, denoted by a full dot, is atg1* 5276.5,g2* 5312.7

FIG. 6. Same as in Fig. 5 ata50.8 andh50.6. The minimum
of the variational solid free energy, denoted by a full dot, is atg1*
5242.4,g2* 5359.7. Note the different scales in Figs. 5 and 6.
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the uniform fluid limit ~7! is not well defined for mixtures
since the way that has to be taken strongly depends ona.
Nevertheless, by assuming that the uniform fluid limit exi
whenever a continuous path connecting the minimum w
the origin can be found, in Figs. 7 and 8 we plot in the (a,h)
plane by a continuous line the breakdown curve of the e
tence of solutions for the lower branchesĥ18 and ĥ28 , by a
dashed line the curve of the exchange of the stability
tween the crystal structure and the fluid phase, and b
dotted line the close packing curve. It is seen that while
the CsCl structure there is a small region satisfying the u
form fluid limit ~below the continuous line! and the stability

FIG. 7. Curves in the (a,h) plane of the breakdown of the

existence of solutions for the lower branchesĥ18 andĥ28 ~full dots!,
exchange of stability with respect to the fluid~open dots!, and close
packing ~dotted line! for the CsCl structure. The continuous an
dashed curves are guides to the eye. The dashed zone satisfi
uniform fluid limit and the stability condition.
E
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condition ~above the dashed line!, this region does not exis
for the NaCl structure.

In conclusion, we have shown that the uniform fluid lim
is not well defined for binary hard-sphere mixtures within t
MWDA. By assuming that this limit can be redefined in
very special way, which strongly depends on the hard-sph
diameter ratio, we have also found that the MWDA is una
to predict any stable NaCl structure with respect to the fl
phase.
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FIG. 8. Same as in Fig. 7 for the NaCl structure. Note that th
is no region satisfying the uniform fluid limit and the stability co
dition.
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